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LARGE-SCALE LINEAR PROGRAMMING 

by George B. Dantzlg* 

Large-Scale Systems and the Computer Revolution; 

From its very Inception, it was envisioned that linear 

programming would be applied to very large, detailed models of economic 

and military systems.  Kantorovitch's 1939 proposals, which were before 

the advent of the electronic computer, mentioned such possibilities, [78]. 

Linear programming evolved out of the U.S» Air Force interest in 1947 in 

finding optimal time-staged deployment plans in case of war, [126]; a 

problem whose mathematical structure is similar to that of finding an 

optimal growth pattern of a developing economy and similar to other 

control problems, [41], [58], [123].  Structurally the dynamic problems 

are characterized in discrete form by staircase matrices representing 

the inputs and outputs from one time period to the next. Treated as an 

ordinary linear program, the number of rows and columns grows in proportion 

to tne number of time periods T and the computational effort grows by 

3 
T  and possibly higher.  This fact has limited the use of linear 

programming as a tool for planning over many time periods. 
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At the present 1967 stage of the computer revolution, 

there Is growing Interest on the part of practical users of linear 

programming models to solve larger and larger systems [40].  Such 

applications Imply that eventually automated systems will obtain 

Information from counters and sensing devices, process data Into 

the proper form for optimization and finally Implement the results by 

control devices. There has been steady progress In this mechanization 

of flow to and from the computer.  Hitherto, this has been one of the 

obstacles encountered In setting-up and solving large-scale systems, 

[113].  The second obstacle has been the cost and the time required to 

successfully solve large problems, [74]. 

It Is difficult to measure the potential of large-scale 

planning. Certain developing countries appear, according to optimal 

calculations on simplified models to be able to grow at the rate of 

15%  per year Implying a doubling of their Industrial base In 5 years. 

But administrators apparently Ignore plans and make decisions based on 

political expediency which restrict growth to 2 or 3X  and sometimes -2%, 

It is the belief of the author that the mechanization of data flow (at 

least in advanced countries) in the next decade will provide pathways 

for constructing large models and the effective implementation of the 

results of optimization. This application of mathematics to decision 

processes will eventually become as Important as the classical 

applications to physics and will, in time, change the emphasis in pure 

mathematics. 



Three Approaches to Solving Large-Scale Systems; 

There have been a great number of papers on this subject as evidenced 

from the list of references attached. I have broadly classified them 

into: 

I Decomposition Principle 
(Sub-optimization using interior path) 

II Compact Inverse 
(Using a simplex variant) 

III Parametric Variation 
(Sub-optimization using simplex variant) 

The aim is to say a little about each, citing some references and some 

structures to which they are applicable. We shall begin with 

I; The Decomposition Principle. [47]: 

Consider the non-linear programming problem: Find 

x ■ (x.t...9x  ) such that 

(1) g(x)    = Min 

f^x)  <    0 :X1 

f2(x)  <    0 :*2 

fjU)  <    0 

rTxTr'o m       ~ 

We assume g(x) and f. (x) are convex functions of x . Assigning 

Lagrange Multipliers A  to a subset of the constraints, say the first 

two, we obtain the SUBPROBLEM: Find x and Min 0(x) satisfying 

(2)     0(x) - g(x) + X1f1(x) + A2f2(x) 

f-(x) < 0 f (x) ^ 0 j  —      m 



Theorem: If for given A  , x = ft solves the subproblem (2) and If 

f^*) <  0 for all i and. A^C*) = 0 for. i = (1,2) then x = * 

solves (1). 

We shall discuss a method where we assign values to A 

and If the resulting x = £ does not satisfy the conditions in the theorem, 

this fact can be used to Improve the values of A. . 

(la) Example; 

FIND x > 0 , Min f (x): 

(3) c- x. + c2 x2 + c^ x» + c, x, + c5 Xc 

a11x1 + a12x2 + a13X3 + a^ + a15x5 

a21Xi + a22X2 

a31Xl + a32X2 

a43X3 + a44X4 

a53X3 + a54X4 

- fo(x> 

^b2 

^b3 

^b4 

^b5 

a65X5  ^ b6 

: A GUESSl 

> SUBPROBLEM 

)1(x1,x2) + 02(x3,x4) + 03(x5) = 0(x) Mlny 

where    01 =    (^ + ^a11)x1 +  (c2 + Aa12)x2; 02 ■ (c3 + Aa13)x3 + (c^ + Aa^x^; 

03 -    (c5 + ^a15)x5 

Note that the subproblem decomposes Into three separate problems;    hence 

the  term:    "Decomposition Principle". 

(lb)    Equivalent Generalized Linear Program: 

Returning to problem (1) we now restate It In the form of 



•■~W»SWW•-»«W^»!, Li iuwaiwww 

\ 

j 

It can 

(4) 

Wolfe's Generalized Linear Program, [38, Chapter 22]. This differs from 

an ordinary linear program in that the coefficients in each column P, 

instead of being fixed are freely drawn from a convex set C 

be shown that the following problem is equivalent to (1). 

FIND Min z , w. >. 0 such that 

-i    r— _ —i 
1 

w 

o" 
r—   -1 

-1 "gCx1)" li^f ""gCx)" 

0 0 f1(x1) 

f2(x1) 

f^x) 

f2(x) 0 
> 

0 
z+ vr1+. ..+ wt+ 

1^ J)^ JL        _ 1 ...y J. 
"™^~™^ RESTRICTED MASTER 

where x  and x satisfy f0(x) < 0,...,f (x) < 0 and the solution J        — m        — 

to  (1)  is 

(5) ^ = I w.ix    +   wx' 

(Ic)    Iterative Process; 

1 t At  the start of iteration    t  ,    x  ,...,x      are known.     An 

improved guess of     (\.   ,  A»)    and a new    x = x is obtained by solving 

the "restricted master" linear programming indicated in (4).    Let  the 

t      t      t t optimal dual variables be     (1,  A   ,  A.,  y  )     and let    w. - w.    be the 

optimal primal variables.    Then 

(6) kt      f      t    i t -    £    wi x 
i-1 

is an optimal solution to  (1)  if 

(7)    Min  {g(x) + AJ f1(x) + A^ f2(x) + u]  >. 0  . 

f1(x)  < 0  , f2(x)   < 0  ; 



i.e. if the last column "prices out" non-negative for all admissable x . 

But (7) is the same as solving the subproblem (2) using (X., O " C^*» ^ 

If in (7), x « x    yields a Min < 0 , this x is used to generate a 

new column of (4). 

The successive ft  satisfy f.Cx) _< 0 for all i and 

gCft') -»■ Min g(x) . The iterative process is finite when applied to a 

linear program like the preceeding example (3). 

This completes our discussion of the decomposition approach. 

To be useful, the generated subproblems must be easy to solve, [36,Chapter 24] 

fll) Compact Inverse; 

The second approach accepts the standard simplex or any of the 

numerous variants and tries to arrange the arithmetic to take advantage 

of structure.  It is clear that if the number of iterations is fixed, the 

only savings can come from doing each iteration efficiently: i.e. doing 

the pricing and those operations involving the inverse of the basis 

efficiently. 

(Ila) Sparse Matrices; 

The larger problems become the lower, in practice^ become the 

density of non-zero coefficients. For problems of 200 equations a density 

of 5% is typical; for larger problems the density drops to ,5%  or less. 

It is possible,however» that the inverses of bases drawn from such 

matrices to be 100% dense, for example; 

i 



(8) 

B 

1  1 

1      1 
iB"1- 

1   -1   -1   -1 

-1 

-1 

-1 

-1 

-1 

-1 

1   "I   "I   -1 

However, If the Inverse Is expressed as products of elementary matrices of 

either the row or column type or both In any order, the number of off- 

diagonal non-zeros In this representation can often be quite low. 

Unsolved prnhlpmt Given a basis express the Inverse as the product of 

elementary matrices such that the count of off-diagonal non-zero elements 

Is minimal. 

Markowitz [90] proposed that the elementary matrices 

correspond to upper and lower dlagonallzatlon operations using as pivot 

element the one that locally creates as few additional non-zeros as 

possible.  Variations of this Idea have been Incorporated In commercial 

codes In the early 1960^, see [43].  The Inverse of a 5% dense basis 

often running not more than 7% dense and the running time often Is cut 

by a factor of 5.  In example (8), the Inverse In product form has the 

same number of non-zeros as the originating basis. 

(lib)  Dynamic Structures; 

As noted earlier these have Important applications [95]. 

One such Is to linear control processes, see [114], [128]. As early as 

1954, the author published a paper on how to compact the inverse 

representation of the basis with a staircase structure, (9);  see [32]. 



Again, In 1963, 1 discussed another method which also permitted one to 

find a compact Inverse and efficiently maintain the compactness In moving 

from one Iteration to the next, [37]. There have been other proposals, all 

excellent, that seek to apply the simplex method to the full system by 

compacting the Inverse. As far as I know, none of these direct proposals 

have been realized In computer codes. See [5J, [56], [71]. 

(9) 
1st period 

Input 

-Ai 
1st period 
output 

2nd period 
Input 

-A2 
2nd period 
output 

3rd period 
Input 

-A3 
3rd period 
output 

4th period 
Input 

-A4 
4th period 

output 

An Important special case Is the Dynamic Leontlef Economic 

Model with Substitution [33]. Another Special Case is a Markov Process 

with Alternative Policies [125], [76]. These cases are known to be 

mathematically equivalent and to have a remarkably simple solution. A 

Leontief System is defined by: (1) a non-negative right hand side, 

8 



(2) exactly one positive coefficient In each column, and (3) the 

existence of a feasible solution for some positive right hand side. 

In the dynamic case, we further assume that the positive coefficient 

always appears In the Input block along the diagonal. 

Theorem: The optimal choice of basic columns associated with the last 

period is independent of the choice in prior periods. 

This permits the determining of optimal basis and Lagrange multipliers 

for the last block of equations. Weighting these equations by their 

multipliers, the last period equations are subtracted from the cost 

equations to produce a modified-cost equation.  Dropping these equations, 

the optimal choice of columns for the next-to-last period and prices are 

next determined using the modified-cost equation; etc. backwards in time 

until the first period is reached. When the basic columns of the first 

period become known, the value of its basic variables can be calculated, 

these in turn can be used to determine those of the second period, etc. 

forward in time. [118]. 

The essential characteristic of the basis in the dynamic 

Leontief case and in the Markov Process case is that the blocks of non- 

zero coefficients are square and non-singular and the entire basis is 

block triangular.  Hence only the Inverses of blocks along the diagonal 

are needed; the rest of the calculations can be done by substitution 

below the diagonal. An ideal block-triangular structure! Unfortunately, 

the general staircase problem does not have this property.  It would be 

very worthwhile to see if one can find a meaningful economic extension of 



the Leontief model (like the Introduction of activities that generate 

capital) that la tractable. 

(He) Block Anrfular Systems; These consist of M general linear 

equations and L sets of equations which have no variable In common. 

The blocks of non-zero coefficients are depicted below. 

(10) 

K n 
B2 

B, 

Several proposals have been made to compact the Inverse, see 

particularly Bennett [21]; also [79], [106]. Essentially they all 

chose square non-singular submatrices B  from the basis along the 

block diagonal which are used as block pivots to Initiate the 

elimination. After the elimination, a square m x m submatrlx Is 

left. Many practical problems satisfy this structure. One Important 

subclass are the multi-commodity network problems, [54], [77], 

sometimes referred to as the traffic assignment problem [24]: 

(11) Find  x,., > 0 , Min z : Ijk - 

I   "Uki'lj (l,j,k) - l,...,n. 

10 



I xipk " I xpjk ■ V 

[ I [ 'iik-uk" 

(p,k) - l....,n 

In another type of application Involving the allocation of many orders 

to several plants, the diagonal blocks consist of one equation each. 

Such a system Is referred to as a generalized upper-bound structure. 

[46]. In one application L > 4000 and M ■ 20 . An important 

property of such systems is that when L is large relative to M most 

(in fact L-M or more) of the diagonal equations have exactly one 

basic variable among the set of its variables. The fact that most 

basic variables are at their upper-bound value can be used to advantage. 

The first code along these lines was developed by M. Kasatkln and 

J. Bigelow for a problem of Crown Zellerbach paper corporation. 

Running time on an example was about 1/10 the time that was required 

by a general purpose code.  See also [65]. 

(lid) Bordered Angular Systems; This consists of blocks along the 

diagonal of non-zero coefficients and a border of non-zeros along the 

top and left. 

(12) 

| 

.  •«a 

l              l 

This structure is sufficiently genera] yet specialized to usefully cover 

11 
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a majority of current applications except the staircase type. 

Generalization (of the procedures Just discussed) have been made by 

heesterman, [72]. Ritter [99] has generalized Rosen's parametric 

scheme, [103]. 

III. Parametric Variation; 

The third and last approach depends on the system being 

weakly linked I.e. on the existence of a few rows and columns which, 

If removed, makes the solution of the remaining system trivial. For 

example, a network-flow problem with an extra budget constraint. By 

assigning a Lagrange Multiplier to the latter, the constraint could 

be removed and the objective equation modified by adding to it the 

multiple of the removed constraint.  The resulting pure network could 

then be easily solved.  If the solution does not satisfy the 

constraint and complementary slackness conditions, then the Lagrange 

Multiplier is varied until it does.  This is also the idea behind the 

decomposition principle but the proposed methods of variation (such as 

those below) are more direct: 

Rosen:  "Partition Programming" [103], Ritter [99]. 

Krön:   "Diakoptics" [83]. 

Balas:  "Infeasibillty Pricing" [10]. 

Beale:  "Pseudo Basic Variables" [17]. 

Abadie & Williams: [3]. 

Gass:   "Dualplex Method" [59]. 

(Ilia) Dualolex Method: 

As representative of the parametric approaches I have selected 

12 



Gas«' "Dualplex Method" which is related to Rosen's "Partition 

Programming" In dual form. It Is clear If we had a transposed block- 

ansular structure 

S          N 

El 

D 
(13) E2 

- b 

E3 

v -* y 

Plvo tii 

1 
ig  allowed 

X > 0 

here Not here 

Y > 0 

that pivoting in the right hand interconnecting part would destroy the 

angular structure but pivoting anywhere in E., E2, E. would not. 

We assume that for a given Y - Y _^ 0 (variables associated with D ) 

a feasible solution X » X ^ 0 exists and is optimal. Let the system 

be reduced to optimal canonical form restricting pivots to only columns 

of E, 
'i * 

(14) IXg + AXj^ + DY  - b 

CXJJ + dY  - z - Zo (Max) 

where X  are basic variables and X^,Y non-basic. Holding ^ " 0 

for the moment, we solve the subproblem 

(15) DY ^ b , Y >. 0 , Max dY 

13 



The dual of this subproblem Is 

I 

(16) nD .> d ,  n .> 0 ,  Mln lib . 

xT 
Since D  Is presumed to consist of few rows and many columns» It is 

suitable for solution by the standard simplex method. Let 11-n  be 

an optimal solution and Y - Y ^ 0 be optimal to Its dual. Denote 

by D.  the 1-th row of D and by A. the j-th column of A . Let 

the basic X  be partitioned Into X ■ 0 and X.. > 0 according as 

components x. - 0 or x. > 0 where x. + D.Y' - h.   ; Let the 

non-basic X» be partitioned Into X-   and XIV according as 

6. - c. - IIA. > 0 or < 0 . 
J   J    J       _ 

«in'0 «IV«o 

(17) 

Xj-O XJJ > 0 XIII " 0    XIV " 0    Y' - 0 

1 

1 

Block 

Pivot 

1 

1 
A 

c    . z-z (Max) 
o 

The block pivot: 

The next step Is to find the block pivot of highest rank that 

switches the role of as many basic and nonbaslc variables in XT and 

X   as possible. Since both sets are at zero value this does not 

effect the current feasible solution. If there Is a choice of block 

pivot Its columns are selected from those with highest 6.  values. 

14 



After the pivot the new dual ■ubproblen Is solved using as starting 

basis, the one corresponding to the final basis of the previous 

subproblem. Y' _> 0 Is still a feasible price vector of the dual 

subproblem but 11' no longer satisfies It. However, 

Theorem (Gass): 

If after the block pivot those components n' (tf 11' 

corresponding to 6. > 0 are replaced by the value -6. , the new 

n   constitutes an Infeaslble basic solution to the new subproblem; 

Y' >_ 0 remains as a feasible vector of dual simplex multipliers. 

Because of Infeaslblllty, the new subproblem can be Improved 

(using the dual simplex method). This Is repeated Iteratlvely until all 

6.^0 or z -*• + oo . Associated with each Iteration Is a basic feasible 

to the full problem so that usual proof of a flnlte-number-of-lteratlons 

applies. 

The parametric methods should be regarded as Important 

variants of the standard simplex process. 

Concluding Remarks; 

This completes the survey of the three types of approaches 

to solving large-scale systems: Decomposition, Compact Inverse, and 

Parametric Variation, and of the type of matrix structures that each 

are best suited.  Little has been said about how different proposals 

compare on test problems. At present, there does not appear to be a 

15 
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practical way Co do this. The program of Instructions for the computer 

are often an order of magnitude more complex than a good commercial 

linear program system and the latter can cost two to five hundred 

thousand dollars to develop. The author feels that better computer 

languages have to be developed to facilitate the experimental coding 

and comparlslon of large-scale system proposals, [74]. 

16 
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